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The iterative Born approximation is derived for three-wave dynamical X-ray

diffraction. Dependence of the three-wave diffraction pro®les of the diffracted

wave on the polarization state of a linearly polarized incident wave is

theoretically and experimentally investigated. General conditions of the phase

sensitivity as well as the asymmetry of diffraction pro®les are obtained from this

approximation and compared with direct dynamical calculations. Reasonable

qualitative agreement between the results obtained from this iterative approach

and the exact dynamical calculation is shown. A new feature of reversing

asymmetry of an intensity pro®le with respect to phase change is theoretically

predicted.

1. Introduction

The phase-dependent behavior of multiwave X-ray diffraction

has been extensively studied for decades (see, for example, the

reviews by Chang, 1984, 1987, 1992, 1998; Colella, 1995;

Weckert & HuÈ mmer, 1997). As is well known, the phase

information is conveyed in multiwave diffraction processes

through the interference between a directly excited Bragg

diffracted wave and detoured excited waves, which could be of

Umweganregung (see Stetsko & Chang, 1999a,b) or Aufhel-

lung types. The resulting angular intensity distribution of a

multiply diffracted wave thus depends on the phase sums of

the associated structure-factor multiplets involved in the

multiwave process and the 180� phase shift of the Umweg-

excited waves.

On the other hand, much attention has also been paid to the

inverse problem ± the determination of phases from theore-

tical (numerical) solutions and measurements. For that

purpose, the choice of a phase-sensitive multiwave diffraction

is of great practical importance. In fact, in a multiwave

diffraction experiment, the phase sensitivity is closely related

to the mutual plays between the polarization of the incident

and the diffracted waves. Theoretically, the expressions of the

diffracted amplitudes and intensities in terms of polarization

factors have been derived from the Bethe and Born ap-

proximations and Takagi±Taupin treatment (Juretschke,

1982a,b, 1986; Hùier & Marthinsen, 1983; Shen, 1986, 1999,

2000; HuÈ mmer & Billy, 1986; Thorkildsen, 1987; Chang &

Tang, 1988; Stetsko, Lin et al., 2001; Shen & Huang, 2001;

Thorkildsen et al., 2001; Thorkildsen & Larsen, 2002; and

many others). The condition for the occurrence of inversed

asymmetry of the diffracted pro®le with �-polarized incident

radiation, compared to a �-polarized wave, has been obtained

(Juretschke, 1986; Shen, 1986). The physics behind this is that

for a �-polarized incident wave the projection of the wave®eld

of the detoured excited wave onto the wave®eld of the directly

excited wave does not coincide and sometimes is opposite,

while for a �-polarized incident wave these directions always

coincide. If the two directions are opposite to each other for

the � polarization, an additional phase shift of 180� is intro-

duced into the detoured excited wave, thus causing the

inversed asymmetry of the three-wave diffraction pro®le. The

use of unpolarized, linearly polarized or elliptically polarized

incident radiation to reveal polarization-dependent phase

measurements have also been theoretically and experimen-

tally pursued (Shen & Finkelstein, 1990, 1992; Luh & Chang,

1991; Shen, 1993; Stetsko & Chang, 1999a,b; Stetsko et al.,

1999, 2000; Stetsko, Juretschke et al., 2001; MorelhaÄo & Kycia,

2002; MorelhaÄo, 2003). Despite these important theoretical

and experimental results, a general description of the phase-

dependent polarization aspects of multiwave X-ray diffrac-

tion, especially for arbitrarily selected (intermediate) polar-

ization of the linearly polarized incident radiation, is still

lacking. It is therefore the purpose of this paper to give a

general formulation, covering both Umweganregung and

Aufhellung processes, and to predict some new polarization

phenomena with respect to multiple-wave interaction, which

cannot be obtained, in principle, for particular � and �
polarizations. Moreover, the intermediate polarization state of

the incident radiation is of practical signi®cance in delineating

phase-sensitive multiple-diffraction pro®les and in providing

accurate determination of the associated phases. In addition, it

may be found useful in improving the phase measurement of

the recently developed reference-beam stereoscopic imaging



technique (Shen, 1998; Shen et al., 2000; Chang, Chao et al.,

1999; Wang et al., 2001; Chao et al., 2002), where a large

number of multiple diffractions are involved and the polar-

ization is different for different diffraction cases.

2. Second-order iterative Born approximation

2.1. Superposition of wavefields

The iterative Born approximation for three-wave diffrac-

tion proposed by Chang & Tang (1988) and Chang et al. (1989)

for phase analysis is adopted. Modi®cation is given to include

higher-order terms in the approximation so that it could

provide qualitative theoretical analysis of the behavior and

phase sensitivity of three-wave X-ray diffraction for an arbi-

trary polarization state of a linearly polarized incident radia-

tion, especially to bring the Aufhellung terms into the intensity

expression.

Consider a three-wave (O, G, L) X-ray diffraction, in which

O, G and L are incident, primary and secondary re¯ections,

respectively. G ÿ L is the coupling re¯ection between G and L

re¯ections. For the three-wave case, the fundamental equa-

tions can be expressed in terms of the electric displacement D

(see, for example, Chang, 1984):

DO � AO�ÿGDG�O� � AO�ÿLDL�O�
DG � AG�GDO�G� � AG�GÿLDL�G� �1�
DL � AL�LDO�L� � AL�LÿGDG�L�;

where the resonance term

AH � 1=�2"H ÿ �O�; �2�
2"H = �K2

H ÿ k2�=K2
H (H � O, G, L), k is the magnitude of the

incident wavevector in vacuum and KH are the magnitudes of

diffracted waves in the crystal. The notation

DHi�Hj� � ÿ�sHj
� �sHj

�DHi
�� �3�

represents the vector component of DHi
normal to the unit

vector sHj
� KHj

=KHj
of the wavevector KHj

. The quantity

�H � ÿre�
2FH=��V� is the Fourier component of the crystal

polarizability and FH is the structure factor of a re¯ection H. re

is the classical radius of the electron, � is the incident X-ray

wavelength and V is the unit-cell volume.

Substituting the third equation of the system (1) into the

®rst two, we obtain

DO � AO�ÿGDG�O� � AOAL�L�ÿLDO�L��O�
� AOAL�LÿG�ÿLDG�L��O� �4a�

DG � AG�GDO�G� � AGAL�L�GÿLDO�L��G�
� AGAL�LÿG�GÿLDG�L��G�; �4b�

where

DHi�Hj��Hl � � ÿ�sHl
� �sHl

�DHi�Hj��� �5�
is the vector component of DHi�Hj� normal to the unit wave-

vector sHl
.

Equations (4a) and (4b) are the exact expressions of the

recurrent relationship between DG and DO in the three-wave

regime. The three-wave (O, G, L) diffraction can be consid-

ered as perturbation to the two-wave (O, G) diffraction that is

described by the ®rst terms in the right-hand side of these

equations. Equation (4a) can be rewritten in an approximate

form as

DO � D
�2�
O � AOAL�L�ÿLD

�2�
O�L��O� � AOAL�LÿG�ÿLDG�L��O�;

�6�
where D

�2�
O is the wave®eld of the O re¯ection for the two-

wave case. Substituting (6) and the two-wave approximate

wave®eld, D
�2�
G � AG�GD

�2�
O�G�, into the right-hand side of (4b),

we ®nally obtain

DG � AG�GD
�2�
O�G� � AGAL�L�GÿLD

�2�
O�L��G�

ÿ AGAOAL�G�L�ÿLD
�2�
O�L��O��G�

ÿ A2
GAL�G�LÿG�GÿLD

�2�
O�G��L��G�

� D2 �DUm �DAu1 �DAu2; �7�
where

DHi�Hj��Hl ��Hm� � ÿ�sHm
� �sHm

�DHi�Hj��Hl ��� �8�
is the vector component of DHi�Hj��Hl � normal to the unit

wavevector sHm
. According to Chang & Tang (1988) and

Chang et al. (1989), (7) is a second-order iterative approxi-

mation for DG. The higher-order terms in (7) are dropped out.

The ®rst two terms in (7) are due to the ®rst-order iterative

approximation of DG. In fact, this ®rst-order iterative ap-

proximation corresponds to the second-order Born approxi-

mation (Shen, 1986). Thus, (7) can be considered as the third-

order Born approximation.

The analysis of (7) shows that within the second-order

iterative approximation the wave®eld DG of the primary

re¯ected wave G in the three-wave case can be represented as

the superposition of the directly excited wave D2, the Umweg-

excited wave DUm and two Aufhellung (see Wagner, 1923)

waves, DAu1 and DAu2. The meaning of these two terms will be

clear in the latter consideration in x3. It should be noted that in

contrast to the present representation the second-order

iterative approximation shown by Chang & Tang (1988) was

not complete and contained only one Aufhellung term DAu2.

Equation (7) can be rewritten as

DG � AG�G�D�2�O�G� � AL �L

�� �� �GÿL

�� �� �G

�� ��ÿ1
exp�i��D�2�O�L��G�

ÿ AOAL �L

�� �� �ÿL

�� ��D�2�O�L��O��G�

ÿ AGAL �LÿG

�� �� �GÿL

�� ��D�2�O�G��L��G��; �9�
where

� � ÿ�G � �L � �GÿL �10�
is the triplet phase invariant and �H (H � G, L, G ÿ L) is the

phase of the structure factor of the H re¯ection. For simplicity,

in (9), instead of the product �H�ÿH, we consider j�Hjj�ÿHj,
which is correct for cases with photon energies far from the

absorption edges of the involved atoms where the phase sum

�H + �ÿH is close to zero. At the absorption edges, where

Friedel's law is no longer valid, the values of the phase sum
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can differ from zero dramatically and should be taken into

account in theoretical considerations (see Stetsko, Lin et al.,

2001).

2.2. Polarization factors of wavefields

Consider a linearly polarized incident wave with the

wave®eld DO = DOpO, where the arbitrary unit polarization

vector pO = �r + �pO with � = cos ! and � = sin !, ! being the

angle between pO and the r vector (see Fig. 1). The polari-

zation unit vectors are de®ned conventionally as r � rO �
rG = [sG � sO]=j[ sG � sO]j, pO = [sO � r], pG = [sG � r].

Within the framework of the kinematical approximation (see

also Zachariasen, 1965; Caticha-Ellis, 1969; Shen & Finkel-

stein, 1992; Stetsko & Chang, 1999b), the vector component

D
�2�
O�G� of the wave®eld DG of (7) can be given by

D
�2�
O�G� � ��rO�G� � �pO�G��DO � p2DO; �11�

where from (3) rO[G] = r and pO[G] = pO ÿ (sG � pO)sG, and

p2 is the polarization vector of the directly diffracted wave.

Similar to D
�2�
O�G�, the vector components D

�2�
O�L��G�, D

�2�
O�L��O��G� and

D
�2�
O�G��L��G� of the wave®eld DG can be given by

D
�2�
O�L��G� � ��rO�L��G� � �pO�L��G��DO � pUmDO; �12a�

D
�2�
O�L��O��G� � ��rO�L��O��G� � �pO�L��O��G��DO � pAu1DO; �12b�

D
�2�
O�G��L��G� � ��rO�G��L��G� � �pO�G��L��G��DO � pAu2DO; �12c�

with the respective polarization vectors pUm, pAu1 and pAu2. All

the components D
�2�
O�G�, D

�2�
O�L��G�, D

�2�
O�L��O��G� and D

�2�
O�G��L��G� of

the wave®eld DG as well as the corresponding polarization

vectors p2, pUm, pAu1 and pAu2 are normal to the wavevector sG

(see Fig. 1) and, therefore, can be represented in the coordi-

nate system (r, pG). The scalar products of the vectors of (11)

and (12) with the unit vectors r and pG give the polarization

factors of the diffracted wave®elds. According to (3), (5) and

(8), the components of the polarization vector p2 are given

by P�2 ��� = (rO[G] � r) = 1, P�2 ��� = (rO[G] � pG) = 0, P�2 ��� =

(pO[G] � r) = 0, P�2 ��� = (pO[G] � pG) = (pO � pG) = cos 2�G,

which are the well known polarization factors for the directly

(primary) diffracted wave D
�2�
O�G�. The terms

P�Um��� � �rO�L��G� � r� � P�2 ��� ÿ �sL � r�2; �13a�
P�Um��� � �rO�L��G� � pG� � P�2 ��� ÿ �sL � r��sL � pG�; �13b�
P�Um��� � �pO�L��G� � r� � P�2 ��� ÿ �sL � pO��sL � r�; �13c�
P�Um��� � �pO�L��G� � pG� � P�2 ��� ÿ �sL � pO��sL � pG� �13d�
are the components of the polarization vector pUm for the

Umweg-exited wave D
�2�
O�L��G� (see also Shen & Finkelstein,

1992; Stetsko & Chang, 1999b) and

P�Au1��� � �rO�L��O��G� � r� � P�Um���; �14a�
P�Au1��� � �rO�L��O��G� � pG� � P�Um��� � �sL � r��sO � pG��sL � sO�;

�14b�
P�Au1��� � �pO�L��O��G� � r� � P�Um���; �14c�
P�Au1��� � �pO�L��O��G� � pG� � P�Um��� � �sL � pO��sO � pG��sL � sO�

�14d�

and

P�Au2��� � �rO�G��L��G� � r� � P�Um���; �15a�
P�Au2��� � �rO�G��L��G� � pG� � P�Um���; �15b�
P�Au2��� � �pO�G��L��G� � r� � P�Um��� � �sG � pO��sL � r��sL � sG�;

�15c�
P�Au2��� � �pO�G��L��G� � pG� � P�Um��� � �sG � pO��sL � pG��sL � sG�

�15d�

are the components of the polarization vectors pAu1 and pAu2

for Aufhellung-exited waves D
�2�
O�L��O��G� and D

�2�
O�G��L��G�, respec-

tively. The symbols � and � in the brackets on the left-hand

side of (13)± (15) indicate the polarization state of the incident

wave. The polarization vectors p2, pUm, pAu1 and pAu2 depend

on the wavelength and the polarization state, speci®ed by the

angle !, of the incident wave. They generally are not collinear

(see Fig. 1). For small values of the Bragg angles �G, �L and

�GÿL of the primary, secondary and coupling re¯ections, the

angles between the polarization vectors are also small (around

several degrees), while when at least one Bragg angle is close

to 45� the angles between the polarization vectors can be

arbitrarily large.

2.3. Intensity

Approximation is employed to give explicit expressions for

the diffracted intensities. The approximation is of kinematical

nature, and is therefore rather rough. However, it allows an

equation for the intensities to be obtained in a simple form,

which is convenient for analysis. Moreover, the analytical

expression gives a better physics insight into the multiple-

wave interaction, which is not attainable from direct and exact

dynamical calculations. In the present paper, we are interested

in correlating, on a qualitative basis, the proposed approxi-

mation with the direct dynamical calculations for the

diffracted intensity pro®les. Comparison of the results

obtained from the two approaches is also given.

The resonance terms AO and AG are considered, under the

proposed approximation, as the two-wave dynamical solution.

For simplicity, we consider here the symmetrical Bragg

primary re¯ection G for a semi-in®nite crystal. According to

Pinsker (1977), the condition AO = AG can be used for the

modes of propagation that make a major contribution to the

Figure 1
Representation of the polarization vectors for primary G re¯ection of the
three-wave diffraction.



intensities of the transmitted and the diffracted waves. Here-

after, AO in (9) is replaced by AG.

Under the proposed approximation, the resonance term AL

is given by (see Chang, 1998)

AL � 1=� ÿ i� =2�; �16�
where � = jLFjj�OjL=O (see Chang et al., 1989) is the

fundamental width of the three-wave diffraction in  scans

and LF = 1=(r � sL) cos �G is a Lorentz factor. The ÿ sign in

(16) corresponds to the situation when the positive direction

of the azimuthal rotation  is accompanied by the movement

of the reciprocal-lattice point of the secondary re¯ection L

towards the interior of the Ewald sphere. Equation (16)

describes the contribution of the azimuth  angular distribu-

tion of the diffracted wave in the vicinity of the exact three-

wave position  = 0. The change of the azimuthal angle  by

crossing this three-wave position is accompanied with a phase

change of 180� in the resonance term AL. According to (9),

this corresponds to the same change of phase of the Umweg-

excited wave (see also HuÈ mmer & Billy, 1986; Shen &

Finkelstein, 1992; Stetsko & Chang, 1999b) and the Aufhel-

lung-excited waves. The complex square of the AL is Lorent-

zian.

In addition to the intensity distributions versus the azimu-

thal angle  represented in the existing version of the iterative

approximation (Chang & Tang, 1988; Chang et al., 1989), we

also consider the three-wave intensity distribution along the

Bragg direction � = ��G. As is well known, in the case of the

symmetrical Bragg diffraction and �-polarized incident

radiation, the resonance term AG along the � direction is

represented by

AG � 1=�� sin 2�G � i Im�O � g�; �17�
where g = �[(� sin 2�G + iIm �O)2 ÿ �G�ÿG]1/2 with Im g < 0.

For a nonabsorbing crystal, the fundamental width �� of the

total re¯ection region is �� = 2j�Gj=sin 2�G. It is not easy to

obtain from (17) an analytical expression for the intensity of

the diffracted wave G in the three-wave case. Therefore, we

make here a rather rough approximation for the resonance

term AG similar to (16) as

AG � 1=�sin 2�G�� ÿ i��=2��: �18�
However, (18) has the following merits. It behaves in a way

similar to (17), i.e. the phase change of 180� in the vicinity of

the exact Bragg position � = 0, and has the same width ��.
Equation (18) can easily be used to derive an analytical

expression for the intensity of the diffracted wave G in the

three-wave case. The ÿ sign in (18) corresponds to the

situation when the positive direction of the Bragg rotation � is

accompanied by the movement of the reciprocal-lattice point

of the primary re¯ection G towards the interior of the Ewald

sphere.

The intensity of the diffracted wave is convenient to be

represented in the universal dimensionless angle parameters

 u = 2 =� and �u = 2�=��, the reduced angle parameters.

Taking into account (9), (16) and (18), the three-wave inten-

sity is given by

IG� u; �u� � DGD�G
� d2

2=��2
u � 1� � �2d2Um� u cos �ÿ sin �� � d2

Um�
� �� 2

u � 1���2
u � 1��ÿ1 � �2d2Au� u�u ÿ 1�

� 2dUmAu��u cos �� sin �� � d2
Au�=� 2

u � 1���2
u � 1�2;
�19�

where the scalar products

d2
2 � p2

2D2
O;

d2Um � f �p2 � pUm�D2
O;

d2Au � fL�p2 � pAu1�D2
O � fGÿL�p2 � pAu2�D2

O;

d2
Um � f 2p2

UmD2
O;

dUmAu � ffL�pUm � pAu1�D2
O � ffGÿL�pUm � pAu2�D2

O;

d2
Au � jfLpAu1 � fGÿLpAu2j2D2

O

and

f � wLj�Ljj�GÿLj=j�Gjj�Oj � wLjFLjjFGÿLj=jFGjjFOj;
fL � wLj�Ljj�ÿLj=j�Gjj�Oj � wLjFLjjFÿLj=jFGjjFOj;

fGÿL � wLj�LÿGjj�GÿLj=j�Gjj�Oj � wLjFLÿGjjFGÿLj=jFGjjFOj;

and the factor wL � 2O=jLFLj.
A highly collimated incident beam in the azimuthal direc-

tion is usually required in multiwave diffraction experiments

to obtain well resolved peak pro®les, while the condition of

collimation in the Bragg direction can be somewhat relaxed.

Therefore, to compare with experimental results, the semi-

integral IG� u� �
R1
ÿ1 IG� u; �u� d�u for intensity will be

considered later on. According to (19),

IG� u� � I2 � ID� u; �� � II� u�
� �d2

2 � ��A u cos �ÿ B sin ��=� 2
u � 1� � �C=� 2

u � 1�
� �d2

2�1� �An u cos �ÿ Bn sin �� Cn�=� 2
u � 1��; �20�

where the parameters A � 2d2Um, B � 2d2Um ÿ dUmAu,

C � d2
Um � d2

Au=2ÿ d2Au, and An � A=d2
2, Bn � B=d2

2 and

Cn � C=d2
2 are the normalized parameters. I2 is the two-wave

intensity, ID( u, �) is the phase-dependent part and II( u) is

the phase-independent part of the three-wave intensity. The

analysis of the parameters of (20) allows one to obtain the well

known behavior of a three-wave diffraction as well as to

predict new behavior unreported in the literature.

It should also be noted that the existing theoretical

approximations, for example the distorted-wave Born

approximation (Shen, 1999, 2000; Shen & Huang, 2001),

Takagi±Taupin treatment (Thorkildsen et al., 2001; Thor-

kildsen & Larsen, 2002) or Bethe approximation (Stetsko, Lin

et al., 2001), give for different cases of Bragg and Laue three-

wave diffraction a much better agreement with numerical

solutions than that represented in the present paper. However,

in most cases, the obtained analytical expressions complicate

the analysis of phase-dependent polarization aspects of three-

wave diffraction and hinder the possibility of predicting new

phase behavior on a qualitative basis. It is, therefore, the

purpose of the present paper to provide such possibilities.
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3. Main behavior of three-wave diffraction

By the main behavior of a three-wave diffraction, we mean the

separation of the contributions of the different components of

the wave®eld (9) to the resultant intensity when one of the

Fourier components of the crystal polarizability (or the

structure factors) of the involved re¯ections is hypothetically

considered as negligibly small. These contributions are

investigated as an example for the Si(000, 331, 404) three-wave

diffraction with �-polarized incident radiation of 1 AÊ wave-

length. Here and later on, the primary re¯ection 331 is a

symmetrical Bragg re¯ection. The intensity pro®les IG

obtained from the exact dynamical calculation (see Stetsko &

Chang, 1997) for � � 0� are shown in Fig. 2. The calculated

pro®les based on the present approximation are given in the

inset for qualitative comparison. The pro®les of the solid curve

are the calculation for the actual three-wave case, where three

strong re¯ections are involved, i.e. j�Gj, j�Lj, j�GÿLj � 0. The

values of the normalized parameters of (20) are in a typical

relation for the diffraction with all strong re¯ections: |Cn| <

Bn < An and Cn < 0 (An = 0.62, Bn = 0.43 and Cn = ÿ0.31). The

diffracted intensity IG versus  , ®rst decreasing then

increasing, exhibits the characteristic asymmetry for � = 0�.
The curves with dashed line, open circles and solid circles are

the calculated pro®les with �G � 0, �L = 0 and �GÿL = 0,

respectively. The intensity asymmetry related to phase is

hardly seen in these three hypothetical situations because the

three-wave interaction is null owing to �ÿG�L�GÿL = 0. The

calculated curves in the inset are in good qualitative agree-

ment with those of the exact calculation. Note that �G � 23:7�

in this case.

As is well known, the Umweg-excited wave can be obtained

when the Fourier component of the crystal polarizability of

the primary re¯ection G is negligibly small, j�Gj ! 0. In this

case, only the second wave®eld DUm of (7) is signi®cant (DG�

DUm). All parameters of (20) are negligibly smaller than d2
Um

of C, i.e. the values of I2 and ID( u, �) are negligibly smaller

than II( u). The dashed curves for this hypothetical case j�Gj =
0 with the parameter C > 0 is the intensity distribution IG( u) =

II( u), which is a Lorenzian. For the representation of all

curves of the inset of Fig. 2 on the same scale, the intensity

IG( u) for the case j�Gj = 0 is normalized by the two-wave

intensity I2(actual) for the actual case (j�Gj � 0). On this scale,

the modi®ed parameter C=d2
2�actual� = 0.29.

When the Fourier component of the crystal polarizability of

the coupling re¯ection G ÿ L is negligibly small, j�GÿLj ! 0,

the electric wave®eld of the diffracted wave can be repre-

sented by DG � D2 + DAu1. The values of the parameters An

and Bn of (20) are negligibly small. The intensity is then

IG( u) = I2 + II( u) with Cn � �d2
Au=2ÿ d2Au�=d2

2. The curves

with solid circles are calculated for j�GÿLj � 0. The parameter

Cn is negative (Cn =ÿ0.27) and, therefore, the intensity IG( u)

can be considered as a constant intensity background minus a

Lorentzian, i.e. the intensity is of the Aufhellung type. In x2.1,

the wave®eld DAu1 is referred to as the wave®eld of the

Aufhellung type.

The same situation takes place when the Fourier component

of the crystal polarizability of the secondary re¯ection L is

negligibly small, j�Lj ! 0. The electric wave®eld of the

diffracted wave can be represented by DG � D2 + DAu2 and

the intensity IG( u) = I2 + II( u) with Cn � �d2
Au=2ÿ d2Au�=d2

2.

The curves with open circles show the characteristic Aufhel-

lung feature. For this hypothetical case, Cn = ÿ0.24.

4. Inversed asymmetry of peak profiles

In the introduction of the present paper, we gave a brief

explanation of the sense of the inversion of the peak-pro®le

asymmetry for the �-polarized incident radiation compared to

the �-polarized radiation. For the �-polarized incident radia-

tion, the parameter An of (20) is always positive, while for the

�-polarized radiation the parameter An can be negative and

the inversed peak-pro®le asymmetry occurs (see also Weckert

& HuÈ mmer, 1997; Larsen & Thorkildsen, 1998; Stetsko &

Chang, 1999b). However, situations can occur when the peak

pro®les for the �- and �-polarized radiation are of the same

asymmetry while for the intermediate (! 6� 0 or �90�)
polarization state of the incident radiation the peak asym-

metry is inversed. This situation can be realized in a rather

wide spectral region when the Bragg angles of the primary, the

secondary or/and the coupling re¯ections are rather close to

45�. The general condition of the inversed peak asymmetry for

the intermediate (!) polarization compared to the � polari-

zation is given by

r�!� � �p2 � pUm�< 0; �21�
when the angle between the polarization vectors p2 and pUm of

the primary and Umweg-exited waves is obtuse or, which is the

same, when the parameter An is negative.

Fig. 3 shows the calculated pro®les of the Si(000, 331, 404)

three-wave diffraction and � � 1:52 AÊ for various linear

polarization conditions. In this case, �G = �GÿL = 37.6� and �G =

Figure 2
Calculated pro®les for Si(000, 331, 404) three-wave diffraction for the
�-polarized incident radiation with � = 1 AÊ . The solid curve corresponds
to the actual case, and curves with dashed line, open circles and solid
circles correspond to �G = 0, �L = 0 and �GÿL = 0, respectively. Intensities
are normalized with the two-wave intensity for the actual case. Inset:
pro®les calculated according to the iterative approximation with the same
conditions.



52.3�. In Fig. 3, the �- (! = 0�) and �-polarized (! = � 90�)
diffraction pro®les exhibit the same proper asymmetry for

� � 0�, i.e. ®rst decreasing then increasing. The same peak-

pro®le asymmetry takes place for the incident polarization

ÿ90 < ! < 0�, where the parameter r(!) of (21) is positive,

while the inversed asymmetry is observed for the incident

polarization 30 � ! � 70�, where the parameter r(!) is

negative. Moreover, for the intermediate polarization state of

the incident wave, the asymmetry of the peak pro®les is much

more clearly seen owing to partial suppression of the primary

intensity and the comparably large intensity change near the

three-wave position that will be considered in x5.

The experimental veri®cation of the theoretical results was

carried out at the 1±9 keV bending-magnet beamline BL15B

of the National Synchrotron Radiation Research Center with

the use of the UHV-compatible six-circle X-ray diffractometer

(Gau et al., 2001) with � geometry. For the detailed experi-

mental conditions, see Stetsko et al. (2000). Fig. 4 shows good

agreement of the experimental results with the theoretical

(calculated) ones (Fig. 3). The comparable broadening and

lower visibility of the experimental pro®les are due to the

convolution with the instrumental functions of the incident

beam. These experimental and theoretical results were

represented for the ®rst time at the XVIII IUCr Congress and

General Assembly (Stetsko et al., 1999).

5. Phase behavior and phase sensitivity

In the present section, we consider fundamentally different

cases with different phase behavior and phase sensitivity of

three-wave diffraction. Several factors affecting the phase

behavior and phase sensitivity are described. Different

combinations of values of the normalized parameters An, Bn

and Cn give different results. These factors are: the numbers

of strong and weak re¯ections involved for the primary,

secondary and coupling re¯ections, the values of Bragg angles

of these re¯ections and the polarization state of the incident

radiation.

All ®gures, Figs. 5±12, of x5 show the calculated pro®les for

the hypothetical values of the triplet phase � = ÿ 90� (open

circles), � = 0� (solid line), � = 90� (solid circles) and � = 180�

(dashed line). Again, the calculations with the proposed

approximation are shown in the insets.

5.1. Bragg angles far from 45���

Here we consider different cases of three-wave diffraction

for the GaAs single crystal with different combinations of

strong and weak re¯ections among the primary, secondary and

coupling re¯ections, and with rather small Bragg angles of all

the re¯ections.

According to the ®rst-order iterative approximation, the

parameter Bn is exactly equal to An. From the second-order

iterative approximation proposed here, the value of the

parameter Bn is rather close to An for the cases when Bragg

angles of all the re¯ections are much less than 45� (see Chang

et al., 2002, for macromolecular crystals). With increasing

values of Bragg angles, the difference between the values of

parameters Bn and An is also increased. However, when the

Bragg angles are still less than 45�, so that the polarization

factors of the primary, Umweg- and Aufhellung-excited waves

[equations (13)±(15)] have no strong in¯uence upon the

change of the values of parameters An and Bn with the change

of the polarization state (!) of the incident radiation, the

values of parameters An and Bn are both positive. In these

cases, three-wave diffraction exhibits the well known `usual'

(the same as for the �-polarized incident radiation) phase-

dependent order of peak-pro®le asymmetry that is indepen-

dent of !. The `usual' order means that the peak pro®les IG

versus  are: asymmetric for � = 0� and � = 180�, so that the

intensity ®rst decreases then increases for � = 0� and ®rst

increases then decreases for � = 180�; and the pro®les are

practically symmetric for � = ÿ90� and � = 90�, so that the
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Figure 4
Intensity pro®les for Si(000, 331, 404) three-wave diffraction for different
polarizations ! of the incident radiation indicated in the ®gure, �= 1.52 AÊ .
For convenience of presentation, the intensities are normalized with the
individual two-wave intensities.

Figure 3
Calculated pro®les for Si(000, 331, 404) three-wave diffraction for
different polarizations ! of the incident radiation indicated in the ®gure,
� = 1.52 AÊ . Intensities are normalized with the two-wave intensity for
! = 0�.
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intensity for � = ÿ90� is stronger than for � = 90�. The phase

behavior and phase sensitivity of three-wave diffraction for

such small Bragg angles are not strongly dependent on the

polarization state of the incident radiation. These cases with

different combinations of strong and weak re¯ections are

considered in this section.

5.1.1. All strong reflections. In Fig. 5, the GaAs(000, 111,

220) three-wave diffraction for � = 1.24 AÊ and �-polarized

incident radiation (! = 90�) is subjected to the dynamical

calculation. The Bragg angles of the re¯ections are �G = �GÿL =

10.9� and �L = 18.1�. The conditions among the parameters An,

Bn and Cn are |Cn| < Bn < An and Cn < 0, An = 0.60, Bn = 0.47

and Cn = ÿ0.28. The asymmetries of peak pro®les are very

consistent with the rather high phase-sensitive behavior for

three-wave diffraction. This means that the peak pro®les for

� = 0� and � = 180� are strongly asymmetric. And the peak

pro®le for � = 90� is of Aufhellung type, while for � =ÿ90� it is

of Umweg type. Owing to the negative value of the parameter

Cn (and still |Cn| < Bn), the Aufhellung component of (7)

slightly dominates in this diffraction, which is typical for

diffraction with all strong re¯ections.

5.1.2. Weak primary and strong secondary and coupling
reflections. Fig. 6 shows the calculation results for GaAs(000,

222, 311) diffraction with � = 1.24 AÊ and �-polarized incident

radiation, where the primary re¯ection 222 is weak. The Bragg

angles of re¯ections are �G = 22.3, �L = 21.3 and �GÿL = 10.9�.
The values of parameters An and Bn are much smaller than the

positive Cn, i.e. An = 5.0, Bn = 3.7 and Cn = 15.9. Because C�
1, the intensity pro®les show Umweg-type features (peaks), i.e.

the Umweg component of (7) strongly dominates in the

diffraction. The phase sensitivity of the pro®les is low, which is

typical for such diffraction. The weak asymmetry of peak

pro®les is observed for � = 0� and � = 180�, while there is no

qualitative difference between � = ÿ90� and � = 90� cases.

5.1.3. Weak secondary and strong primary and coupling
reflections. Fig. 7 shows the calculated results for GaAs(000,

311, 222) diffraction with � = 1.24 AÊ and �-polarized incident

radiation where the secondary re¯ection is weak. The values

jAnj and jBnj are much smaller than jCnj, where Cn is negative

(An = 0.12, Bn = 0.07 and Cn = ÿ0.45). Therefore, the

Aufhellung component of (7) strongly dominates in the

diffraction. Similar to the above-mentioned case, the phase

sensitivity of the pro®les is low. Again, the weak asymmetry of

peak pro®les is observed for � = 0� and � = 180�, while there is

no qualitative difference between � = ÿ90� and � = 90� cases.

The case with the weak coupling and strong primary and

secondary re¯ections is the same as the case considered here.

5.1.4. Strong secondary and weak primary and coupling
reflections. This case is very interesting and its phase sensi-

tivity can be very high. The results of a detailed phase-

dependent analysis of this case will be reported elsewhere. In

particular, Chao et al. (2002) have already demonstrated the

high phase sensitivity of this case for macromolecular crystals.

The case of strong coupling and weak primary and secondary

re¯ections is the same as the case mentioned here.

5.1.5. Strong primary and weak secondary and coupling
reflections. The phase sensitivity of this case can also be high.

However, in contrast to the previous high-phase-sensitive

cases, the visibility of this case is low. It means that the

deviation of the three-wave intensity from the two-wave one is

rather small. The condition of the low visibility of three-wave

diffraction is given as

jAnj; jBnj and jCnj � 1: �22�

5.2. Bragg angles close to 45���

The polarization state of the incident radiation plays an

important role in revealing the phase effect on the diffracted

intensity for cases with Bragg angles rather close to 45�. Some

new variety of combinations of the values of parameters An,

Figure 6
Calculated pro®les for GaAs(000, 222, 311) three-wave diffraction for the
�-polarized incident radiation with � = 1.24 AÊ . Curves with open circles,
solid line, solid circles and dashed line correspond to � = ÿ90, 0, 90 and
180�, respectively. Inset: pro®les calculated according to the iterative
approximation with the same conditions.

Figure 5
Calculated pro®les for GaAs(000, 111, 220) three-wave diffraction for the
�-polarized incident radiation with � = 1.24 AÊ . Curves with open circles,
solid line, solid circles and dashed line correspond to � = ÿ 90, 0, 90 and
180�, respectively. Inset: pro®les calculated according to the iterative
approximation with the same conditions.



Bn and Cn takes place. Under this circumstance, the cases with

the different phase sensitivity, high or low, will be considered

below. On the one hand, the use of the Bragg angles close to

45� allows the phase sensitivity of three-wave diffraction to be

increased by the partial suppression of the stronger Umweg

wave when the Bragg angles of the secondary or coupling

re¯ection are close to 45� (Stetsko et al., 2000), and by the

partial suppression of the stronger primary wave when the

Bragg angle of the primary re¯ection is close to 45� (Kshe-

vetskii et al., 1985; Stetsko et al., 1999; Stetsko, Juretschke et

al., 2001; MorelhaÄo & Avanci, 2001; MorelhaÄo & Kycia, 2002;

MorelhaÄo, 2003). However, the use of the Bragg angles close

to 45� essentially complicates the interpretation of the phase

dependence of three-wave diffraction when the primary and

Umweg waves are equally strong. It should be noted that

MorelhaÄo & Kycia (2002) erroneously used the conception of

partial suppression of primary re¯ection (when �G is close to

45�) for a comparably weak primary re¯ection. The case

presented in this paper with a high phase sensitivity is

attributed to the partial suppression of the Umweg wave with

the Bragg angle of the secondary re¯ection being close to 45�.
When the Bragg angles are rather close to 45�, the polari-

zation factors of the primary, Umweg- and Aufhellung-excited

waves [equations (13)±(15)] now have a strong in¯uence upon

the change of the values of parameters An and Bn with the

change of the polarization state (!) or the wavelength of the

incident radiation. Sometimes, the values of parameters An

and Bn can be dramatically different. This allows the new

phase-dependent features of the three-wave diffraction to be

detected. It should be noted that, in particular, the essential

change of the values of parameters An and Bn can be obtained

by the use of the � polarization (! = 90�) with the change of

the wavelength of the incident radiation. The experimental

approach for investigation of the phase dependence of

multiple-wave diffraction with the use of �-polarized X-ray

synchrotron radiation of different energies has some technical

advantages compared to that with different (intermediate)

polarizations ! for a ®xed energy.

In x4, we showed that the inversion of peak-pro®le asym-

metry with the change of the polarization state of the incident

radiation is accompanied by the change of the sign of the

parameter An. This inversion is also accompanied by the

change of the sign of the parameter Bn. For the inverse case,

when the values of parameters An and Bn are both negative,

the three-wave diffraction exhibits the well known `inversed'

phase-dependent order of peak-pro®le asymmetry (compared

to the �-polarized incident radiation). The `inversed' order

means that the peak pro®les IG versus  are still asymmetric

for � = 0� and � = 180�, but the intensity ®rst increasing then

decreasing for � = 0� and ®rst decreasing then increasing for �
= 180�. And the pro®les are still practically symmetric for

� = ÿ90� and � = 90�, but the intensity for � = ÿ90� is now

weaker than for � = 90�.
However, changing of the signs of parameters An and Bn

may take place under somewhat different conditions of the

incident wave, such as different polarizations ! at a ®xed

wavelength and different wavelengths at ®xed polarization.

Thus, for a given incident wave, the following cases can be

realized: when the value of jBnj is much less than jAnj (case of

x5.2.1), when the value of jAnj is much less than jBnj (case of

x5.2.3), and when the signs of parameters An and Bn are

different (case of x5.2.2). For the later case, the three-wave

diffraction exhibits a new `mixed' phase-dependent order of

peak-pro®le asymmetry. In particular, for a positive An and

negative Bn, the `mixed' order means that for � = 0� and � =

180� the relation between the peak-pro®le asymmetries is the

same as for the `usual' order while for � =ÿ90� and � = 90� the

relation is the same as for the `inversed' order.

For cases with Bragg angles close to 45�, the proposed

kinematical approach gives the most essential errors

compared to the direct dynamical calculations for estimation

of the polarization states of diffracted waves. The qualitatively
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Figure 8
Calculated pro®les for Si(000, 331, 313) three-wave diffraction for the
�-polarized incident radiation with � = 1.4 AÊ . Curves with open circles,
solid line, solid circles and dashed line correspond to � = ÿ90, 0, 90 and
180�, respectively. Inset: pro®les calculated according to the iterative
approximation with � = 1.26 AÊ .

Figure 7
Calculated pro®les for GaAs(000, 311, 222) three-wave diffraction for the
�-polarized incident radiation with � = 1.24 AÊ . Curves with open circles,
solid line, solid circles and dashed line correspond to � = ÿ90, 0, 90 and
180�, respectively. Inset: pro®les calculated according to the iterative
approximation with the same conditions.
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similar phase behavior of three-wave diffraction obtained by

these two calculation approaches is seen for slightly different

polarization states of the incident radiation, i.e. of the order of

several arc degrees in !, or around several hundredths of AÊ

for the wavelength of the incident radiation. These differences

will be indicated in the ®gure insets.

The Si(000, 331, 313) three-wave diffraction with strong

re¯ections is investigated in all cases (xx5.2.1±5.2.4, see Figs. 8±

12). The �-polarized incident radiations with different wave-

lengths are considered as the ®rst two cases (xx5.2.1 and 5.2.2).

When the wavelength of the incident radiation is so small that

the values of all Bragg angles are much less than 45�, the

values of parameters An and Bn are both positive and the

three-wave diffraction exhibits the `usual' phase-dependent

order of peak-pro®le asymmetry. When the wavelength is

increased, the parameter Bn goes to zero for this three-wave

diffraction, while the parameter An is different from zero.

5.2.1. jBnj is much less than jAnj. From direct dynamical

calculations (Fig. 8), this takes place when the wavelength of

the �-polarized incident radiation is around � = 1.4 AÊ . The

Bragg angles of re¯ections are �G = �L = 34.2� and �GÿL =

21.4�. The value jBnj of (20) is much less than jAnj and An =

2.0, Bn = 0 and Cn = 1.33. Since Bn is the coef®cient of sin � in

(20) and close to zero, the diffracted intensity pro®les for

� = 90� and � = ÿ90� are almost indistinguishable. This case

demonstrates the partially low phase sensitivity for triplet

phases close to �90�. Moreover, when the value of the par-

ameter Cn is also close to zero, i.e. when IG� u�=I2 �
1� An u cos �=� 2

u � 1�, only the peak-pro®le asymmetry for

triplet phases ÿ90 < � < 90� is different from that for 90 < � <

270�, while within the region ÿ90 < � < 90� (or 90 < � < 270�)
the shapes of peak pro®les are qualitatively indistinguishable

5.2.2. `Mixed' phase-dependent order of peak-profile
asymmetry (different signs of parameters An and Bn). Now

the wavelength of the �-polarized incident radiation is

changed from 1.4 to 1.48 AÊ . The Bragg angles of re¯ections

are �G = �L = 36.4� and �GÿL = 22.7�. The value of parameter

Bn becomes negative when the value of An is still positive, i.e.

An = 2.1, Bn = ÿ0.4 and Cn = 2.3. This case demonstrates the

above-mentioned `mixed' phase-dependent order of peak-

pro®le asymmetry as shown in Fig. 9.

The �-polarized incident radiation is often employed for the

experimental investigation of the multiple-wave diffraction

owing to the better resolution of the monochromated incident

beam in the azimuthal direction compared to the �-polarized

radiation. Therefore, the two cases, x5.2.1 and x5.2.2, consid-

ered here show how careful the analysis of the phase depen-

dence of multiple-wave diffraction should be when the

polarization factors come into play.

The different polarizations ! for the ®xed wavelength

1.76 AÊ of the incident radiation are considered in the ®nal

cases, xx5.2.3 and 5.2.4, which demonstrate different phase

sensitivity. The Bragg angles of the re¯ections for the Si(000,

331, 313) diffraction are �G = �L = 44.9� and �GÿL = 27.3�. The

three-wave diffractions where two Bragg angles are simulta-

neously close to 45� are extremely sensitive to polarizations !
of the incident radiation (see the primary and coupling

re¯ections for the case of x4 or the primary and secondary

re¯ections for the present case). When ! = 0� (� polarization),

the considered three-wave diffraction exhibits the traditional

features for diffraction with all strong re¯ections: a rather high

phase sensitivity with positive values of parameters An and Bn

where the Aufhellung component of (7) dominates in this

diffraction owing to the negative value of Cn. Similar to the

diffraction of x4, with the change of polarization ! in the

positive direction, the inversion of the pro®le asymmetry takes

place and the parameters An and Bn become negative.

5.2.3. jAnj is much less than jBnj. From the direct dynamical

calculations (Fig. 10), it follows that with the increase of the

polarization angle to ! = 22� the differences between the peak

intensities for � = 0� and � = 180� are negligibly small, while the

intensities for � = ÿ90� and � = 90� are quite different. This

Figure 9
Calculated pro®les for Si(000, 331, 313) three-wave diffraction for the
�-polarized incident radiation with � = 1.48 AÊ . Curves with open circles,
solid line, solid circles and dashed line correspond to � = ÿ90, 0, 90 and
180�, respectively. Inset: pro®les calculated according to the iterative
approximation with � = 1.38 AÊ .

Figure 10
Calculated pro®les for Si(000, 331, 313) three-wave diffraction for the
polarization ! = 22� of the incident radiation with � = 1.76 AÊ . Curves with
open circles, solid line, solid circles and dashed line correspond to � =
ÿ90, 0, 90 and 180�, respectively. Inset: pro®les calculated according to
the iterative approximation with ! = 35.4�.



situation corresponds to the relation between the parameters

of (20) when the value jAnj is much less than jBnj. Since An is

the coef®cient of cos � in (20) and close to zero, the normal-

ized intensity is IG� u�=I2 � 1� �Bn cos �� Cn�=� 2
u � 1�.

The peak pro®les for � = 0� and � = 180� are practically

identical. This case demonstrates the low phase sensitivity; the

shapes of peak pro®les are qualitatively indistinguishable.

However, in contrast to the direct dynamical calculations, the

calculations of the proposed kinematical approximation do

not show any difference between the intensity pro®les for � =

ÿ90� and � = 90� (see inset of Fig. 10 where all curves for

different � coincide). For the considered case when the Bragg

angles of the primary and secondary re¯ections are extremely

close to 45�, the value of the parameter Bn is equal to zero

simultaneously with An. The Aufhellung component of (7) still

dominates in intensity owing to the negative value of Cn, i.e.

Cn = ÿ0.45.

5.2.4. Parameter Cn close to zero. Because the primary

re¯ection of our diffraction is strong and the Bragg angle is

rather close to 45�, the change of the polarization from ! = 0

to ! =�90� in positive (0 < ! < 90�) or in negative (ÿ90 < ! <

0�) directions leads to the suppression (or partial suppression)

of the primary re¯ection, so that the value of the parameter

Cn will change from negative to positive, i.e. the Umweg

component of (7) will overweigh the Aufhellung component.

Thus, in the positive (0 < ! < 90�) and negative (ÿ90 < ! < 0�)
polarization regions, the polarization ! conditions can be

realized when the value of the parameter Cn is very close to

zero [see also the investigations of Stetsko, Juretschke et al.

(2001) with a crystal analyzer].

From the direct dynamical calculations, this takes place

when the polarization ! is around ÿ30� for the negative

polarization region (Fig. 11) and is around 55� for the positive

polarization region (Fig. 12). The value of parameters An and

Bn are both positive for ! =ÿ30� (An = 1.2, Bn = 0.65 and Cn =

0) and negative for ! = 55� (An =ÿ1.1, Bn =ÿ0.81 and Cn = 0).

Since Cn is close to zero for both Figs. 11 and 12, the contri-

bution of the phase-independent part to the pro®le is null and

the Umweg and Aufhellung components of (7) compensate

each other. Thus, the intensity pro®les are solely phase

dependent. The three-wave diffraction exhibits the `usual'

phase-dependent order of peak-pro®le asymmetry for ! =

ÿ30� and the `inversed' order for ! = 55�.
Thus, summarizing all the considered cases in x5, the

condition of the high phase sensitivity within the framework of

the second-order iterative Born approximation is given by

jAnj � jBnj; jCn=Anj< 1 and jCn=Bnj< 1 �23�
(see also Weckert et al., 1993; Weckert & HuÈ mmer, 1997; and

Stetsko et al., 2000; Stetsko, Juretschke et al., 2001 within the

framework of the ®rst-order iterative Born approximation).

In conclusion, the second-order iterative Born approxi-

mation is adopted for three-wave X-ray diffraction that

exhibits the dynamical interaction of the Umweg and

Aufhellung processes. Dependence of the three-wave diffrac-

tion pro®les of the diffracted wave on the polarization state of

a linearly polarized incident wave is theoretically and

experimentally investigated. Different cases with low, partially

low and high phase sensitivity are theoretically demonstrated.

General conditions of the phase sensitivity as well as the

visibility and asymmetry of diffraction pro®les are obtained

within the framework of the second-order iterative approxi-

mation and compared with direct dynamical calculations.

Reasonable qualitative agreement between the results

obtained from this approach and the direct dynamical calcu-

lation is shown. A new feature of the `mixed' phase-dependent

order of three-wave peak-pro®le asymmetries is theoretically

predicted. The qualitative increase of the phase sensitivity of

multiple-wave diffraction by the partial suppression of the

strong primary re¯ection with the use of the change of the

polarization state of a linearly polarized radiation is also

demonstrated.
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Figure 11
Calculated pro®les for Si(000, 331, 313) three-wave diffraction for the
polarization ! = ÿ30� of the incident radiation with � = 1.76 AÊ . Curves
with open circles, solid line, solid circles and dashed line correspond to � =
ÿ90, 0, 90 and 180�, respectively. Inset: pro®les calculated according to
the iterative approximation with ! = ÿ33�.

Figure 12
Calculated pro®les for Si(000, 331, 313) three-wave diffraction for the
polarization ! = 55� of the incident radiation with � = 1.76 AÊ . Curves with
open circles, solid line, solid circles and dashed line correspond to � =
ÿ90, 0, 90 and 180�, respectively. Inset: pro®les calculated according to
the iterative approximation with ! = 61�.
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